Exploitation Chronomancy

Temporal Return Addresses

skape

toorcon, 2005

Part |

Introduction

Who am |?

» Matt Miller (mmiller@hick.org)

Who am |?

v

Matt Miller (mmiller@hick.org)

Software developer
Security enthusiast
Metasploit contributor
Win32 HIPS researcher
Professional thumb wrestler

vV Vv v Y

Plan of attack

» A brief background on return addresses

Plan of attack

» A brief background on return addresses

» Description and analysis of temporal addresses
» What they are

Plan of attack
» A brief background on return addresses
» Description and analysis of temporal addresses

» What they are
» Why they’re useful

Plan of attack

» A brief background on return addresses

» Description and analysis of temporal addresses
» What they are
» Why they’re useful
» How to find them

Plan of attack

» A brief background on return addresses

» Description and analysis of temporal addresses
» What they are
» Why they’re useful
» How to find them
» How to use them

Plan of attack

» A brief background on return addresses

» Description and analysis of temporal addresses
» What they are

v

Why they’re useful
» How to find them
How to use them

v

» Temporal return addresses in action
» Windows NT SharedUserData

What are return addresses?

» What do | mean by return address?

What are return addresses?

» What do | mean by return address?

» An address that results in direct or indirect control of execution
flow

» Not limited to stack-based overflow of the return address

What are return addresses?

» What do | mean by return address?

» An address that results in direct or indirect control of execution
flow

» Not limited to stack-based overflow of the return address

» Direct
» An address of shellcode on the stack

What are return addresses?

» What do | mean by return address?

» An address that results in direct or indirect control of execution
flow

» Not limited to stack-based overflow of the return address

» Direct
» An address of shellcode on the stack
» Indirect
» An address of a jmp esp instruction
» A heap-based address stored in DTORs or elsewhere

What types of return addresses do people use?

» On Windows...
» System and application DLLs with useful opcodes
> Jjmp esp
» pop/pop/ret

What types of return addresses do people use?

» On Windows...
» System and application DLLs with useful opcodes
> Jjmp esp
» pop/pop/ret

» Stack addresses often times have null bytes or are
unpredictable

What types of return addresses do people use?

» On Windows...
» System and application DLLs with useful opcodes
> Jjmp esp
» pop/pop/ret

» Stack addresses often times have null bytes or are
unpredictable

» On UNIX derivatives
» Stack/heap addresses pointing directly to the shellcode

What types of return addresses do people use?

» On Windows...
» System and application DLLs with useful opcodes
> Jjmp esp
» pop/pop/ret

» Stack addresses often times have null bytes or are
unpredictable

» On UNIX derivatives
» Stack/heap addresses pointing directly to the shellcode

» It’s rare to see bouncing off useful opcodes in shared
libraries

What types of return addresses do people use?

» On Windows...
» System and application DLLs with useful opcodes
> Jjmp esp
» pop/pop/ret

» Stack addresses often times have null bytes or are
unpredictable

» On UNIX derivatives
» Stack/heap addresses pointing directly to the shellcode

» It’s rare to see bouncing off useful opcodes in shared
libraries

» It is very uncommon, but not unheard of, to have an addressless
exploit

How reliable are most return addresses?

» Most exploits make assumptions about address space layout
» If the address space is different, the exploit will fail

How reliable are most return addresses?

» Most exploits make assumptions about address space layout
» If the address space is different, the exploit will fail

» Often times, address assumptions are not portable between OS
and application revisions

» ws2help.dll is good, but addresses aren’t portable
between NT, 2000, XP, and 2003

How reliable are most return addresses?

» Most exploits make assumptions about address space layout
» If the address space is different, the exploit will fail

» Often times, address assumptions are not portable between OS
and application revisions

» ws2help.dll is good, but addresses aren’t portable
between NT, 2000, XP, and 2003

» This forces exploits to have version specific targets

Dealing with version-specific return addresses

» Some exploits can be made universal even with version specific
addresses

» Metasploit's RPC DCOM exploit

Dealing with version-specific return addresses

» Some exploits can be made universal even with version specific
addresses

» Metasploit's RPC DCOM exploit
» Sometimes the OS/app version can be reliably determined

» Especially common in browser-based exploits, among
others

Dealing with version-specific return addresses

» Some exploits can be made universal even with version specific
addresses

» Metasploit's RPC DCOM exploit
» Sometimes the OS/app version can be reliably determined

» Especially common in browser-based exploits, among
others

» In other cases, target selection is a shot in the dark
» Using the wrong target can result in a lost opportunity

Dealing with version-specific return addresses

» Some exploits can be made universal even with version specific
addresses

» Metasploit's RPC DCOM exploit
» Sometimes the OS/app version can be reliably determined

» Especially common in browser-based exploits, among
others

» In other cases, target selection is a shot in the dark
» Using the wrong target can result in a lost opportunity

» |s there any way we can improve this?

Dealing with version-specific return addresses

» Some exploits can be made universal even with version specific
addresses

» Metasploit's RPC DCOM exploit
» Sometimes the OS/app version can be reliably determined

» Especially common in browser-based exploits, among
others

» In other cases, target selection is a shot in the dark
» Using the wrong target can result in a lost opportunity

» |s there any way we can improve this?
» We'll see :)

Can moving targets be useful?

» A process’ address space is constantly changing

Can moving targets be useful?
» A process’ address space is constantly changing

» Thread stacks are always in a state of flux

Can moving targets be useful?

» A process’ address space is constantly changing

» Thread stacks are always in a state of flux
» Heap regions are changed as more data is allocated and freed

Can moving targets be useful?

» A process’ address space is constantly changing

» Thread stacks are always in a state of flux
» Heap regions are changed as more data is allocated and freed
» Files are mapped into memory and subsequently unmapped

Can moving targets be useful?
» A process’ address space is constantly changing

» Thread stacks are always in a state of flux

» Heap regions are changed as more data is allocated and freed
» Files are mapped into memory and subsequently unmapped

» DLLs are loaded and unloaded as necessary

Can moving targets be useful?

» A process’ address space is constantly changing

Thread stacks are always in a state of flux

Heap regions are changed as more data is allocated and freed
Files are mapped into memory and subsequently unmapped
DLLs are loaded and unloaded as necessary

vV v.v Yy

v

When searching for viable return addresses, only static regions
are analyzed

» Typically limited to loaded images and possibly stacks

» A few other regions are sometimes of use too, such as
PEB/TEB

Can moving targets be useful?

>

vV v.v Yy

A process’ address space is constantly changing

Thread stacks are always in a state of flux

Heap regions are changed as more data is allocated and freed
Files are mapped into memory and subsequently unmapped
DLLs are loaded and unloaded as necessary

When searching for viable return addresses, only static regions
are analyzed

» Typically limited to loaded images and possibly stacks

» A few other regions are sometimes of use too, such as
PEB/TEB
Are we missing anything important by ignoring non-static
regions?

Can moving targets be useful?

» Dynamic regions of memory can contain useful opcodes, just
like static regions

» A pointer stored in the heap can be composed of a viable
opcode

» An integer stored in a variable can be composed of a viable
opcode

Can moving targets be useful?

» Dynamic regions of memory can contain useful opcodes, just
like static regions

» A pointer stored in the heap can be composed of a viable
opcode

» An integer stored in a variable can be composed of a viable
opcode

» The problem is that their state is inherently transient

Can moving targets be useful?

» Dynamic regions of memory can contain useful opcodes, just
like static regions

» A pointer stored in the heap can be composed of a viable
opcode

» An integer stored in a variable can be composed of a viable
opcode

» The problem is that their state is inherently transient
» However, transient states can sometimes be predicted

Can moving targets be useful?

» Dynamic regions of memory can contain useful opcodes, just
like static regions

» A pointer stored in the heap can be composed of a viable
opcode

» An integer stored in a variable can be composed of a viable
opcode

» The problem is that their state is inherently transient

» However, transient states can sometimes be predicted

» A good example of this can be seen in timer variables
» ['ll refer to them as temporal addresses

Part Il

Temporal Addresses

Temporal addresses

» So just what is a temporal address, anyway?

Temporal addresses

» So just what is a temporal address, anyway?
time_t foo = time (NULL) ;

Temporal addresses

» So just what is a temporal address, anyway?
time_t foo = time (NULL);
» It's a location in memory that contains timer state
» The number of seconds since Jan 1, 1970
» The number of seconds since a program started

Temporal addresses

» So just what is a temporal address, anyway?
time_t foo = time (NULL);
» It's a location in memory that contains timer state
» The number of seconds since Jan 1, 1970
» The number of seconds since a program started

» All temporal addresses have three basic properties

Temporal address properties

Capacity
» The maximum size of a temporal address’ contents
» This limits the amount timer state it can hold

Temporal address properties

Capacity
» The maximum size of a temporal address’ contents
» This limits the amount timer state it can hold
Period

» How often the timer state is updated

Temporal address properties

Capacity
» The maximum size of a temporal address’ contents
» This limits the amount timer state it can hold
Period
» How often the timer state is updated
Scale
» The unit of measure associated with the timer
» Number of seconds since epoch 1970
» Number of seconds since epoch 1601
» Counter from program start

Why are temporal addresses useful?

» Timer state is just a series of bytes in a certain order
» Knowing the three properties of a temporal address is handy

Why are temporal addresses useful?

» Timer state is just a series of bytes in a certain order
» Knowing the three properties of a temporal address is handy
» |t means you can predict two things

» When certain byte combinations will occur

» How long those byte combinations will last

Why are temporal addresses useful?

» Timer state is just a series of bytes in a certain order
» Knowing the three properties of a temporal address is handy
» |t means you can predict two things

» When certain byte combinations will occur

» How long those byte combinations will last

» This makes temporal addresses potentially useful as return
addresses

» All we need to know is when useful byte combinations will occur

An example of a temporal address

Example (little endian)
» Addresss: 0x01462004
» Capacity: 4 bytes
» Period: 1 second
» Scale: Seconds since epoch (1970)

An example of a temporal address

Example (little endian)

» Addresss: 0x01462004

» Capacity: 4 bytes

» Period: 1 second

» Scale: Seconds since epoch (1970)
Analysis

> Let’s say the temporal state reaches 1136808960 seconds

An example of a temporal address

Example (little endian)
» Addresss: 0x01462004
» Capacity: 4 bytes
» Period: 1 second
» Scale: Seconds since epoch (1970)
Analysis
> Let’s say the temporal state reaches 1136808960 seconds
» This is equivalent to 0x43¢25400

An example of a temporal address

Example (little endian)
» Addresss: 0x01462004
» Capacity: 4 bytes
» Period: 1 second
» Scale: Seconds since epoch (1970)
Analysis
> Let’s say the temporal state reaches 1136808960 seconds
» This is equivalent to 0x43¢25400
> 0x54 Oxc2 is equivalentto push esp / retn

An example of a temporal address

Example (little endian)
» Addresss: 0x01462004
» Capacity: 4 bytes
» Period: 1 second
» Scale: Seconds since epoch (1970)
Analysis
> Let’s say the temporal state reaches 1136808960 seconds
» This is equivalent to 0x43¢25400
> 0x54 Oxc2 is equivalentto push esp / retn

» This means on Monday, Jan. 09, 2006 at 4:16 pm, 0x01462005
can be used as a universal esp => eip instruction

An example of a temporal address

Example (little endian)
» Addresss: 0x01462004
» Capacity: 4 bytes
» Period: 1 second
» Scale: Seconds since epoch (1970)
Analysis
> Let’s say the temporal state reaches 1136808960 seconds
» This is equivalent to 0x43¢25400
> 0x54 Oxc2 is equivalentto push esp / retn

» This means on Monday, Jan. 09, 2006 at 4:16 pm, 0x01462005
can be used as a universal esp => eip instruction

» It can only be used for 4 minutes and 16 seconds, though

Locating temporal addresses

» We've seen how temporal addresses can be useful
» But how do we go about locating them?

Locating temporal addresses

» We've seen how temporal addresses can be useful
» But how do we go about locating them?

» We know they all have a capacity, period, and scale
» So how can we use that to identify them?

Locating temporal addresses

» We've seen how temporal addresses can be useful
» But how do we go about locating them?

» We know they all have a capacity, period, and scale
» So how can we use that to identify them?
» There are a few approaches

Locating temporal addresses

» We've seen how temporal addresses can be useful
» But how do we go about locating them?

v

We know they all have a capacity, period, and scale
So how can we use that to identify them?

v

v

There are a few approaches

v

Manually analyze a process’ address space

Locating temporal addresses

» We've seen how temporal addresses can be useful
» But how do we go about locating them?

» We know they all have a capacity, period, and scale
» So how can we use that to identify them?
» There are a few approaches

» Manually analyze a process’ address space

» Breakpoint on timer-related functions and see where the output
is stored

Locating temporal addresses

| 4

>

We’ve seen how temporal addresses can be useful
But how do we go about locating them?

» We know they all have a capacity, period, and scale
» So how can we use that to identify them?
» There are a few approaches

» Manually analyze a process’ address space

» Breakpoint on timer-related functions and see where the output

is stored

Use a program to compare address space differences over time
to find patterns

Locating temporal addresses

» We've seen how temporal addresses can be useful
» But how do we go about locating them?

» We know they all have a capacity, period, and scale
» So how can we use that to identify them?
» There are a few approaches

» Manually analyze a process’ address space

» Breakpoint on timer-related functions and see where the output
is stored

» Use a program to compare address space differences over time
to find patterns

» Let’s focus on the latter

Locating temporal addresses

» The most automatable way is through diffing

Locating temporal addresses

» The most automatable way is through diffing

» A process’ address space is polled n times
» Each polling cycle is spread apart by t seconds

Locating temporal addresses
» The most automatable way is through diffing

» A process’ address space is polled n times
» Each polling cycle is spread apart by t seconds

» Memory contents are diffed each time
» Locations that change at a constant rate are flagged

Locating temporal addresses

» The most automatable way is through diffing

v

A process’ address space is polled n times
Each polling cycle is spread apart by t seconds

v

v

Memory contents are diffed each time

v

Locations that change at a constant rate are flagged

v

Once finished, each flagged address can have its capacity,
period, and scale calculated

Locating temporal addresses

» The most automatable way is through diffing

» A process’ address space is polled n times
» Each polling cycle is spread apart by t seconds

» Memory contents are diffed each time
» Locations that change at a constant rate are flagged

» Once finished, each flagged address can have its capacity,
period, and scale calculated

» If an address had its contents incremented by 5000 each cycle
and t was 5 seconds

» The period could be between 1 second and 1 millisecond

Example of locating temporal addresses

C:\>telescope 2620
[*] Attaching to process 2620 (5 polling cycles)...
[*] Polling address space........

Temporal address locations:

0x0012FE88 [Size=4, Scale=Counter, Period=1 sec]
0x0012FF7C [Size=4, Scale=Epoch (1970), Period=1l sec]
O0x7FFE0000 [Size=4, Scale=Counter, Period=600 msec]
O0x7FFE0014 [Size=8, Scale=Epoch (1601), Period=100 nsec]

Determining temporal address byte durations

» Finding a temporal address is only the first step

» Next, we need to calculate how long it takes for each byte to
change

Determining temporal address byte durations

» Finding a temporal address is only the first step

» Next, we need to calculate how long it takes for each byte to
change

» Each byte has 256 combinations (0x00 — 0xff)

» Calculating iterations between change of each byte index x is
described as

duration(x) = 256*

Determining temporal address byte durations

» Finding a temporal address is only the first step

» Next, we need to calculate how long it takes for each byte to
change

» Each byte has 256 combinations (0x00 — 0xff)

» Calculating iterations between change of each byte index x is
described as

duration(x) = 256*
» Using the temporal address period, we can calculate how long it
takes for each byte to change

tosec(x) = duration(x)/period

Determining temporal address byte durations

» Finding a temporal address is only the first step

» Next, we need to calculate how long it takes for each byte to
change

» Each byte has 256 combinations (0x00 — 0xff)

» Calculating iterations between change of each byte index x is
described as

duration(x) = 256*
» Using the temporal address period, we can calculate how long it
takes for each byte to change

tosec(x) = duration(x)/period

» These calculations tell us the byte index to start our search at

Example temporal address byte durations

Byte durations for a 4 byte temporal address that updates every
second

$./chronomancer.rb -a 4-1s-1970 -1

Interval of time it takes to change each byte:
: 1 sec

: 4 mins 16 secs

: 18 hours 12 mins 16 secs
: 194 days 4 hours 20 mins 16 secs

w N = O

Example temporal address byte durations

Byte durations for a 4 byte temporal address that updates every
second

$./chronomancer.rb -a 4-1s-1970 -1

Interval of time it takes to change each byte:
: 1 sec

: 4 mins 16 secs

: 18 hours 12 mins 16 secs
: 194 days 4 hours 20 mins 16 secs

w N = O

Our best bet would be to start viable opcode searches at byte index 1

Calculating viable opcode windows

> Let’s review what we’ve got so far
» A temporal address with a capacity, period, and scale
» The duration of each byte within the temporal address

Calculating viable opcode windows

> Let’s review what we’ve got so far
» A temporal address with a capacity, period, and scale
» The duration of each byte within the temporal address

» Now it’s time to predict the future!

Calculating viable opcode windows

> Let’s review what we’ve got so far
» A temporal address with a capacity, period, and scale
» The duration of each byte within the temporal address

» Now it’s time to predict the future!

» First we need to define our viable opcode set
> Jmp esp
» push esp, ret

» etc

Calculating viable opcode windows

> Let’s review what we’ve got so far
» A temporal address with a capacity, period, and scale
» The duration of each byte within the temporal address

» Now it’s time to predict the future!

» First we need to define our viable opcode set

> Jmp esp
» push esp, ret

» etc

» From there we can create all the viable opcode permutations

Calculating viable opcode permutations

» Pretty simple algorithm

» Plug the viable opcode bytes into each byte offset starting at a
predetermined byte index

Calculating viable opcode permutations

» Pretty simple algorithm

» Plug the viable opcode bytes into each byte offset starting at a
predetermined byte index

» If we had a temporal address with a 1 second period, we'd do. ..
» Oxff at byte index 1, Oxe4 at byte index 2
» Oxff at byte index 2, 0xe4 at byte index 3

Calculating viable opcode permutations

» Pretty simple algorithm

» Plug the viable opcode bytes into each byte offset starting at a
predetermined byte index

» If we had a temporal address with a 1 second period, we'd do. ..
» Oxff at byte index 1, Oxe4 at byte index 2
» Oxff at byte index 2, 0xe4 at byte index 3

» From there it’s necessary to generate all the byte combinations
that could occur surrounding the viable opcode bytes

» The result is all the possible timer states containing the viable
opcode bytes

Calculating viable opcode permutations

» Pretty simple algorithm

» Plug the viable opcode bytes into each byte offset starting at a
predetermined byte index

» If we had a temporal address with a 1 second period, we'd do. ..
» Oxff at byte index 1, Oxe4 at byte index 2
» Oxff at byte index 2, 0xe4 at byte index 3

» From there it’s necessary to generate all the byte combinations
that could occur surrounding the viable opcode bytes

» The result is all the possible timer states containing the viable
opcode bytes

» After all the permutations are calculated, all we need to do is
figure out when to strike

Part Il

Picking a Time to Strike

Figuring out when to strike

» Knowing the location and future states of temporal addresses is
not enough

Figuring out when to strike

» Knowing the location and future states of temporal addresses is
not enough

» In order to use them, timing information must be determined

Figuring out when to strike

» Knowing the location and future states of temporal addresses is
not enough

» In order to use them, timing information must be determined

» |f the scale is measuring system time, we need to know the
system time

» [f the scale is measuring time since program start, we need to
know when the program started

Figuring out when to strike

» Knowing the location and future states of temporal addresses is
not enough

» In order to use them, timing information must be determined

» |f the scale is measuring system time, we need to know the
system time

» [f the scale is measuring time since program start, we need to
know when the program started

» The latter may be infeasible
» But determining system time is not

Determining remote system time

» DCERPC SrvSvc NetrRemoteTOD

= Microsoft server service, MetrRemoteTOD
operation: NetrRemoteToD (28)
= Time of day
referent ID: Ox001628h8
Elapsed: 1123295129
msecs: 1389875008
Hours: 3
Mins: 32
sacs: 9
Hunds: 27
Timezone: 300
Tinterwval: 310

Day: 6
Month: 8
Year: 2005

weekday: 6

Determining remote system time

» |f the remote box is a web server, the HTTP date header can be
used

B Hypertext Transfer protocol
H HTTPAL.1 200 ONFyh

[pate: sat, 06 Aug 2005 03:38:06 GMTWr\A]
Server: Microsoft-IIS/ 6. O
Last-Modified: mMmon, 24 mar 2003 07:11:10 GMTNrn
ETag: "2f00al-acd-3ereafie"\r\n
Accept-Ranges: hyteswrin
Content-Length: 2765%r%n
connection: closayryn
content-Type: text/htmlyryn
RNl

Determining remote system time

> Lots of other ways exist...

Determining remote system time
> Lots of other ways exist...

» ICMP Timestamp

Determining remote system time
> Lots of other ways exist...

» ICMP Timestamp
» |P Timestamp

Determining remote system time
> Lots of other ways exist...

» ICMP Timestamp
» |P Timestamp
» IRC CTCP TIME

Determining remote system time
> Lots of other ways exist...

» [CMP Timestamp
» |P Timestamp

» IRC CTCP TIME
» SSL negotiations

Determining remote system time
> Lots of other ways exist...

ICMP Timestamp
IP Timestamp

IRC CTCP TIME
SSL negotiations

vV v.v vy

v

And the list goes on

Part IV
Case Study: Windows NT SharedUserData

What is SharedUserData

Shared region of memory

Found in every win32 process

Located at 0x7££e0000 in every version of Windows NT+
Executable up until XPSP2 + PAE

Biggest draw back is that it contains a NULL byte

But why’s this related to this presentation?

vV Vv vV VY

What is SharedUserData

vV Vv vV VY

Shared region of memory

Found in every win32 process

Located at 0x7££e0000 in every version of Windows NT+
Executable up until XPSP2 + PAE

Biggest draw back is that it contains a NULL byte

But why’s this related to this presentation?

Because it contains temporal addresses

The SharedUserData data structure

0:000> dt _KUSER_SHARED_DATA

+0x000
+0x004
+0x008
+0x014
+0x020
+0x02c

Looking at the first few bytes of SharedUserData is

interesting

0:000> dd
7££e0000
7££e0010
0:000> dd
7££e0000
7££e0010
0:000> dd
7££e0000
7££e0010

TickCountLow

TickCountMultiplier

InterruptTime
SystemTime
TimeZoneBias
ImageNumberLow

0x7ffe0000 L8
055d7525 0£a00000
00000cca a78f0b48
0x7ffe0000 L8
055d7558 0£fa00000
00000cca a808a336
0x7ffe0000 L8
055d7587 0£a00000
00000cca a878blbc

Uint4B

Uint4B

_KSYSTEM_TIME
_KSYSTEM_TIME
_KSYSTEM_TIME

Uint2B

93£d5902
01c59a46

9477d5d2
01c59a46

94e80a7e
01c59a46

00000cca
01c59%a4do6

00000cca
01c59%a46

00000cca
01c59%a46

Temporal addresses found in SharedUserData

TickCountLow
» Address: 0x7£ffe0000
» Capacity: 4 bytes
» Period: Variable
» Scale: Milliseconds since boot

Temporal addresses found in SharedUserData

TickCountLow
» Address: 0x7f£fe0000
» Capacity: 4 bytes
» Period: Variable

» Scale: Milliseconds since boot
InterruptTime

» Address: 0x7££e0008

» Capacity: 8 bytes

» Period: Variable

» Scale: 100ns time processing interrupts

Temporal addresses found in SharedUserData

TickCountLow
» Address: 0x7f£fe0000
» Capacity: 4 bytes
» Period: Variable

» Scale: Milliseconds since boot
InterruptTime

» Address: 0x7££e0008

» Capacity: 8 bytes

» Period: Variable

» Scale: 100ns time processing interrupts
SystemTime

> Address: 0x7££fe0014

» Capacity: 8 bytes

» Period: 100 nanoseconds

» Scale: 100ns intervals since epoch 1601

SystemTime rocks

» SystemTime stores the count of 100ns intervals since 1601

» Note that it does not appear to account for daylight savings
time

SystemTime rocks

» SystemTime stores the count of 100ns intervals since 1601

» Note that it does not appear to account for daylight savings
time

» At a structural level it's a KSYSTEM_TIME structure
0:000> dt _KSYSTEM TIME

+0x000 LowPart : Uint4B
+0x004 HighlTime : Int4B
+0x008 High2Time : Int4B

» Let’'s see how we can abuse this

Taking advantage of the SystemTime attribute

First we need to calculate the byte durations based on the
period

$./chronomancer.rb —-a 8-100ns-1601 -1
Interval of time it takes to change each byte:

<1l sec

: <1 sec

<1l sec

1 sec

7 mins 9 secs

1 day 6 hours 32 mins 31 secs

325 days 18 hours 44 mins 57 secs

: 228 years 179 days 23 hours 50 mins 3 secs

N o 0w N O

Taking advantage of the SystemTime attribute

First we need to calculate the byte durations based on the
period

$./chronomancer.rb —-a 8-100ns-1601 -1
Interval of time it takes to change each byte:

<1l sec

: <1 sec

<1l sec

1 sec

7 mins 9 secs

1 day 6 hours 32 mins 31 secs

325 days 18 hours 44 mins 57 secs

: 228 years 179 days 23 hours 50 mins 3 secs

N o 0w N O

Looks like we should start at byte index 4, that would at least give us a 7
minute window

Generating the permutations

» The final step is to generate permutations

Generating the permutations
» The final step is to generate permutations

» We could do this manually...

Generating the permutations
» The final step is to generate permutations

» We could do this manually...
» Or we could use a script)

$./chronomancer.rb -a 8-100ns-1601

1/1970,1807823,Wed Jan 21 16:10:23 CST
0000000050¢c29d01,eax => eip,7 mins
1/1970,1808252,Wed Jan 21 16:17:32 CST
0000000051c29d01,ecx => eip,7 mins
1/1970,1808682,Wed Jan 21 16:24:42 CST
0000000052c29d01,edx => eip,7 mins
1/1970,1809111,Wed Jan 21 16:31:51 CST
0000000053¢c29d01, ebx => eip,7 mins
1/1970,1809541,Wed Jan 21 16:39:01 CST
0000000054c29d01,esp => eip,7 mins

1970,
9 secs
1970,
9 secs
1970,
9 secs
1970,
9 secs
1970,
9 secs

Upcoming viable opcode windows for SystemTime

Watch out in September of this year!

Date Opeode Group
Sun Sep 25 22:08:50 CDT 2005 | eax = eip
Sun Sep 25 22:15:59 CDT 2005 | ecx => eip
Sun Sep 25 22:23:00 CDT 2005 | edx => eip
Sun Sep 25 22:30:18 CDT 2005 | eby => eip
Sun Sep 25 22:37:28 CDT 2005 | esp => eip
Sun Sep 25 22:44:37 CDT 2005 | ebp => eip
Sun Sep 25 22:51:47 CDT 2005 | esi => eip
Sun Sep 25 22:58:56 CDT 2005 | edi => eip

Plotting viable opcode windows for SystemTime

Coccurrences

—a —a —x =

—= [t P2 P
Lo [LG S

(= p]

&‘—’N—&\‘—ﬁbﬂ—’ﬂ%

L N R = 2 = R SN R
}

i

™, 7 3

I'n M,
it

o wmw o w o w o w o w o wmw o W
[T

- = = — o

—

™

—

™

o
™

]
™

mom
|
™™

——[esp +0x10] => gip
——[esp +0x20] => gip
[esp +8] == eip
[req + offzet] == eip

[reg] => eip

| [—eax=>eip

n

——ebp == eip
—ehy == eip
——eC¥ == eip
—edi = eip

ey = aip
—esi = gip

——esp = eip

What’s with the [esp + 8] spikes?

» In 2002 and 2003, SystemTime had a jump in occurrences of
[esp + 8] => eip combinations

» [esp + 8] isequivalentto pop/pop/ret
» It's too bad this technique wasn’t applied then!
» Never again in our lifetime will that spike recur

The [esp + 8] spikes

0

&0 ——[esp + 0x10] == eip

—&— [esp + 0x20] == eip
50 [esp + 8] == cip
—— [reg] == eip

an —%— Bax == gip
—e— ehp == eip

Time

—+— ehx == eip
30

—=— ek == Eip

edi == eip
& edx == gip

esi == gip

—
=

—— B2 == Eip

|
i

Mar-02
BApr-02 5
Jun-02
Jul-o2

Feb-03
Mar-03 =
M ay-03
A1g-03
Dec-03 &

deourrences

Part V

Conclusion

So how probable is this anyway?

» In general, this technique isn’t very feasible

» Viable opcode windows are usually pretty far apart

» It might not always be possible to get system timing information
» The list goes on...

So how probable is this anyway?

vV v.v Yy

vV v.v Yy

In general, this technique isn’t very feasible

Viable opcode windows are usually pretty far apart

It might not always be possible to get system timing information
The list goes on...

But what if you compromised an NTP server?

This would give you control over things SystemTime
And you would automatically know what hosts to target
That doesn’t seem too infeasible...

Conclusion

» Check out the uninformed paper for a more detailed explanation
» http://www.uninformed.org

» Includes code for. ..
» Locating temporal addresses on win32 (telescope.c)

» Calculating viable opcode windows and byte durations
(chronomancer)

http://www.uninformed.org

Questions

Questions?

	Introduction
	Temporal Addresses
	Locating Temporal Addresses
	Calculating Viable Opcode Windows

	Picking a Time to Strike
	Case Study: Windows NT SharedUserData
	Conclusion

