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What are return addresses?
I What do I mean by return address?

I An address that results in direct or indirect control of execution
flow

I Not limited to stack-based overflow of the return address

I Direct
I An address of shellcode on the stack

I Indirect
I An address of a jmp esp instruction
I A heap-based address stored in DTORs or elsewhere
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What types of return addresses do people use?

I On Windows...
I System and application DLLs with useful opcodes

I jmp esp

I pop/pop/ret

I Stack addresses often times have null bytes or are
unpredictable

I On UNIX derivatives
I Stack/heap addresses pointing directly to the shellcode
I It’s rare to see bouncing off useful opcodes in shared

libraries

I It is very uncommon, but not unheard of, to have an addressless
exploit
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How reliable are most return addresses?
I Most exploits make assumptions about address space layout
I If the address space is different, the exploit will fail

I Often times, address assumptions are not portable between OS
and application revisions

I ws2help.dll is good, but addresses aren’t portable
between NT, 2000, XP, and 2003

I This forces exploits to have version specific targets
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Dealing with version-specific return addresses

I Some exploits can be made universal even with version specific
addresses

I Metasploit’s RPC DCOM exploit

I Sometimes the OS/app version can be reliably determined
I Especially common in browser-based exploits, among

others

I In other cases, target selection is a shot in the dark
I Using the wrong target can result in a lost opportunity

I Is there any way we can improve this?
I We’ll see :)
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Can moving targets be useful?

I A process’ address space is constantly changing

I Thread stacks are always in a state of flux
I Heap regions are changed as more data is allocated and freed
I Files are mapped into memory and subsequently unmapped
I DLLs are loaded and unloaded as necessary

I When searching for viable return addresses, only static regions
are analyzed

I Typically limited to loaded images and possibly stacks
I A few other regions are sometimes of use too, such as

PEB/TEB
I Are we missing anything important by ignoring non-static

regions?
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I Dynamic regions of memory can contain useful opcodes, just
like static regions

I A pointer stored in the heap can be composed of a viable
opcode

I An integer stored in a variable can be composed of a viable
opcode

I The problem is that their state is inherently transient
I However, transient states can sometimes be predicted
I A good example of this can be seen in timer variables

I I’ll refer to them as temporal addresses
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Temporal addresses

I So just what is a temporal address, anyway?

time_t foo = time(NULL);

I It’s a location in memory that contains timer state
I The number of seconds since Jan 1, 1970
I The number of seconds since a program started

I All temporal addresses have three basic properties
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Temporal address properties

Capacity
I The maximum size of a temporal address’ contents
I This limits the amount timer state it can hold

Period
I How often the timer state is updated

Scale
I The unit of measure associated with the timer

I Number of seconds since epoch 1970
I Number of seconds since epoch 1601
I Counter from program start



Temporal address properties

Capacity
I The maximum size of a temporal address’ contents
I This limits the amount timer state it can hold

Period
I How often the timer state is updated

Scale
I The unit of measure associated with the timer

I Number of seconds since epoch 1970
I Number of seconds since epoch 1601
I Counter from program start



Temporal address properties

Capacity
I The maximum size of a temporal address’ contents
I This limits the amount timer state it can hold

Period
I How often the timer state is updated

Scale
I The unit of measure associated with the timer

I Number of seconds since epoch 1970
I Number of seconds since epoch 1601
I Counter from program start



Why are temporal addresses useful?

I Timer state is just a series of bytes in a certain order
I Knowing the three properties of a temporal address is handy

I It means you can predict two things
I When certain byte combinations will occur
I How long those byte combinations will last

I This makes temporal addresses potentially useful as return
addresses

I All we need to know is when useful byte combinations will occur
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An example of a temporal address

Example (little endian)
I Addresss: 0x01462004
I Capacity: 4 bytes
I Period: 1 second
I Scale: Seconds since epoch (1970)

Analysis
I Let’s say the temporal state reaches 1136808960 seconds
I This is equivalent to 0x43c25400

I 0x54 0xc2 is equivalent to push esp / retn

I This means on Monday, Jan. 09, 2006 at 4:16 pm, 0x01462005
can be used as a universal esp => eip instruction

I It can only be used for 4 minutes and 16 seconds, though
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Locating temporal addresses

I We’ve seen how temporal addresses can be useful
I But how do we go about locating them?

I We know they all have a capacity, period, and scale
I So how can we use that to identify them?
I There are a few approaches

I Manually analyze a process’ address space
I Breakpoint on timer-related functions and see where the output

is stored
I Use a program to compare address space differences over time

to find patterns

I Let’s focus on the latter
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Locating temporal addresses

I The most automatable way is through diffing

I A process’ address space is polled n times
I Each polling cycle is spread apart by t seconds

I Memory contents are diffed each time
I Locations that change at a constant rate are flagged

I Once finished, each flagged address can have its capacity,
period, and scale calculated

I If an address had its contents incremented by 5000 each cycle
and t was 5 seconds

I The period could be between 1 second and 1 millisecond
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Example of locating temporal addresses

C:\>telescope 2620
[*] Attaching to process 2620 (5 polling cycles)...
[*] Polling address space........

Temporal address locations:

0x0012FE88 [Size=4, Scale=Counter, Period=1 sec]
0x0012FF7C [Size=4, Scale=Epoch (1970), Period=1 sec]
0x7FFE0000 [Size=4, Scale=Counter, Period=600 msec]
0x7FFE0014 [Size=8, Scale=Epoch (1601), Period=100 nsec]



Determining temporal address byte durations

I Finding a temporal address is only the first step
I Next, we need to calculate how long it takes for each byte to

change

I Each byte has 256 combinations (0x00 - 0xff)
I Calculating iterations between change of each byte index x is

described as

duration(x) = 256x

I Using the temporal address period, we can calculate how long it
takes for each byte to change

tosec(x) = duration(x)/period

I These calculations tell us the byte index to start our search at
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Example temporal address byte durations

Byte durations for a 4 byte temporal address that updates every
second

$ ./chronomancer.rb -a 4-1s-1970 -i

Interval of time it takes to change each byte:

0: 1 sec
1: 4 mins 16 secs
2: 18 hours 12 mins 16 secs
3: 194 days 4 hours 20 mins 16 secs

Our best bet would be to start viable opcode searches at byte index 1
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Calculating viable opcode windows

I Let’s review what we’ve got so far
I A temporal address with a capacity, period, and scale
I The duration of each byte within the temporal address

I Now it’s time to predict the future!

I First we need to define our viable opcode set
I jmp esp

I push esp, ret

I etc

I From there we can create all the viable opcode permutations
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Calculating viable opcode permutations

I Pretty simple algorithm
I Plug the viable opcode bytes into each byte offset starting at a

predetermined byte index

I If we had a temporal address with a 1 second period, we’d do. . .
I 0xff at byte index 1, 0xe4 at byte index 2
I 0xff at byte index 2, 0xe4 at byte index 3

I From there it’s necessary to generate all the byte combinations
that could occur surrounding the viable opcode bytes

I The result is all the possible timer states containing the viable
opcode bytes

I After all the permutations are calculated, all we need to do is
figure out when to strike
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Part III

Picking a Time to Strike



Figuring out when to strike

I Knowing the location and future states of temporal addresses is
not enough

I In order to use them, timing information must be determined
I If the scale is measuring system time, we need to know the

system time
I If the scale is measuring time since program start, we need to

know when the program started

I The latter may be infeasible
I But determining system time is not
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Determining remote system time

I DCERPC SrvSvc NetrRemoteTOD



Determining remote system time

I If the remote box is a web server, the HTTP date header can be
used



Determining remote system time

I Lots of other ways exist...

I ICMP Timestamp
I IP Timestamp
I IRC CTCP TIME
I SSL negotiations

I And the list goes on
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Part IV

Case Study: Windows NT SharedUserData



What is SharedUserData

I Shared region of memory
I Found in every win32 process
I Located at 0x7ffe0000 in every version of Windows NT+
I Executable up until XPSP2 + PAE
I Biggest draw back is that it contains a NULL byte
I But why’s this related to this presentation?

I Because it contains temporal addresses
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The SharedUserData data structure
0:000> dt _KUSER_SHARED_DATA

+0x000 TickCountLow : Uint4B
+0x004 TickCountMultiplier : Uint4B
+0x008 InterruptTime : _KSYSTEM_TIME
+0x014 SystemTime : _KSYSTEM_TIME
+0x020 TimeZoneBias : _KSYSTEM_TIME
+0x02c ImageNumberLow : Uint2B
...

Looking at the first few bytes of SharedUserData is
interesting

0:000> dd 0x7ffe0000 L8
7ffe0000 055d7525 0fa00000 93fd5902 00000cca
7ffe0010 00000cca a78f0b48 01c59a46 01c59a46
0:000> dd 0x7ffe0000 L8
7ffe0000 055d7558 0fa00000 9477d5d2 00000cca
7ffe0010 00000cca a808a336 01c59a46 01c59a46
0:000> dd 0x7ffe0000 L8
7ffe0000 055d7587 0fa00000 94e80a7e 00000cca
7ffe0010 00000cca a878b1bc 01c59a46 01c59a46



Temporal addresses found in SharedUserData

TickCountLow
I Address: 0x7ffe0000
I Capacity: 4 bytes
I Period: Variable
I Scale: Milliseconds since boot

InterruptTime
I Address: 0x7ffe0008
I Capacity: 8 bytes
I Period: Variable
I Scale: 100ns time processing interrupts

SystemTime
I Address: 0x7ffe0014
I Capacity: 8 bytes
I Period: 100 nanoseconds
I Scale: 100ns intervals since epoch 1601
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Temporal addresses found in SharedUserData

TickCountLow
I Address: 0x7ffe0000
I Capacity: 4 bytes
I Period: Variable
I Scale: Milliseconds since boot

InterruptTime
I Address: 0x7ffe0008
I Capacity: 8 bytes
I Period: Variable
I Scale: 100ns time processing interrupts

SystemTime
I Address: 0x7ffe0014
I Capacity: 8 bytes
I Period: 100 nanoseconds
I Scale: 100ns intervals since epoch 1601



SystemTime rocks

I SystemTime stores the count of 100ns intervals since 1601
I Note that it does not appear to account for daylight savings

time

I At a structural level it’s a KSYSTEM_TIME structure
0:000> dt _KSYSTEM_TIME

+0x000 LowPart : Uint4B
+0x004 High1Time : Int4B
+0x008 High2Time : Int4B

I Let’s see how we can abuse this
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Taking advantage of the SystemTime attribute

First we need to calculate the byte durations based on the
period

$ ./chronomancer.rb -a 8-100ns-1601 -i

Interval of time it takes to change each byte:

0: <1 sec
1: <1 sec
2: <1 sec
3: 1 sec
4: 7 mins 9 secs
5: 1 day 6 hours 32 mins 31 secs
6: 325 days 18 hours 44 mins 57 secs
7: 228 years 179 days 23 hours 50 mins 3 secs

Looks like we should start at byte index 4, that would at least give us a 7
minute window



Taking advantage of the SystemTime attribute

First we need to calculate the byte durations based on the
period

$ ./chronomancer.rb -a 8-100ns-1601 -i

Interval of time it takes to change each byte:

0: <1 sec
1: <1 sec
2: <1 sec
3: 1 sec
4: 7 mins 9 secs
5: 1 day 6 hours 32 mins 31 secs
6: 325 days 18 hours 44 mins 57 secs
7: 228 years 179 days 23 hours 50 mins 3 secs

Looks like we should start at byte index 4, that would at least give us a 7
minute window



Generating the permutations

I The final step is to generate permutations

I We could do this manually...
I Or we could use a script :)

$ ./chronomancer.rb -a 8-100ns-1601

...
1/1970,1807823,Wed Jan 21 16:10:23 CST 1970,

0000000050c29d01,eax => eip,7 mins 9 secs
1/1970,1808252,Wed Jan 21 16:17:32 CST 1970,

0000000051c29d01,ecx => eip,7 mins 9 secs
1/1970,1808682,Wed Jan 21 16:24:42 CST 1970,

0000000052c29d01,edx => eip,7 mins 9 secs
1/1970,1809111,Wed Jan 21 16:31:51 CST 1970,

0000000053c29d01,ebx => eip,7 mins 9 secs
1/1970,1809541,Wed Jan 21 16:39:01 CST 1970,

0000000054c29d01,esp => eip,7 mins 9 secs
...
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Upcoming viable opcode windows for SystemTime

Watch out in September of this year!



Plotting viable opcode windows for SystemTime



What’s with the [esp + 8] spikes?

I In 2002 and 2003, SystemTime had a jump in occurrences of
[esp + 8] => eip combinations

I [esp + 8] is equivalent to pop/pop/ret

I It’s too bad this technique wasn’t applied then!
I Never again in our lifetime will that spike recur



The [esp + 8] spikes



Part V

Conclusion



So how probable is this anyway?

I In general, this technique isn’t very feasible
I Viable opcode windows are usually pretty far apart
I It might not always be possible to get system timing information
I The list goes on...

I But what if you compromised an NTP server?
I This would give you control over things SystemTime
I And you would automatically know what hosts to target
I That doesn’t seem too infeasible...
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Conclusion

I Check out the uninformed paper for a more detailed explanation
I http://www.uninformed.org

I Includes code for. . .
I Locating temporal addresses on win32 (telescope.c)
I Calculating viable opcode windows and byte durations

(chronomancer)

http://www.uninformed.org


Questions

Questions?
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