
Improving Automated Analysis of
Windows x64 Binaries

April, 2006
skape

mmiller@hick.org

Contents

1 Foreword 2

2 Introduction 3

3 Background 4
3.1 PE32+ Image File Format . 4
3.2 Calling Convention . 5

3.2.1 Stack Frame Layout . 5
3.3 Exception Handling on x64 . 7

3.3.1 Exception Directory . 8
3.3.2 Unwind Information . 8

4 Analysis Techniques 11
4.1 Exception Directory Enumeration 11

4.1.1 Functions . 11
4.1.2 Stack Frame Annotation 12
4.1.3 Exception Handlers . 15

4.2 Register Parameter Area Annotation 16

5 Conclusion 17

1

Chapter 1

Foreword

Abstract: As Windows x64 becomes a more prominent platform, it will become
necessary to develop techniques that improve the binary analysis process. In
particular, automated techniques that can be performed prior to doing code or
data flow analysis can be useful in getting a better understanding for how a
binary operates. To that point, this paper gives a brief explanation of some
of the changes that have been made to support Windows x64 binaries. From
there, a few basic techniques are illustrated that can be used to improve the
process of identifying functions, annotating their stack frames, and describing
their exception handler relationships. Source code to an example IDA plugin is
also included that shows how these techniques can be implemented.

Thanks: The author would like to thank bugcheck, sh0k, jt, spoonm, and
Skywing.

Update: The article in MSDN magazine by Matt Pietrek was published af-
ter this article was written. However, it contains a lot of useful information
and touches on many of the same topics that this article covers in the back-
ground chapter. The article can be found here: http://msdn.microsoft.com/
msdnmag/issues/06/05/x64/default.aspx.

With that, on with the show. . .

2

http://msdn.microsoft.com/msdnmag/issues/06/05/x64/default.aspx
http://msdn.microsoft.com/msdnmag/issues/06/05/x64/default.aspx

Chapter 2

Introduction

The demand for techniques that can be used to improve the analysis process of
Windows x64 binaries will only increase as the Windows x64 platform becomes
more accepted and used in the market place. There is a deluge of useful infor-
mation surrounding techniques that can be used to perform code and data flow
analysis that is also applicable to the x64 architecture. However, techniques
that can be used to better annotate and streamline the initial analysis phases,
such as identifying functions and describing their stack frames, is still a ripe
area for improvement at the time of this writing. For that reason, this paper
will start by describing some of the changes that have been made to support
Windows x64 binaries. This background information is useful because it serves
as a basis for understanding a few basic techniques that may be used to improve
some of the initial analysis phases. During the course of this paper, the term
Windows x64 binary will simply be reduced to x64 binary in the interest of
brevity.

3

Chapter 3

Background

Prior to diving into some of the analysis techniques that can be performed on
x64 binaries, it’s first necessary to learn a bit about some of the changes that
were made to support the x64 architecture. This chapter will give a very brief
explanation of some of the things that have been introduced, but will by no
means attempt to act as an authoritative reference.

3.1 PE32+ Image File Format

The image file format for the x64 platform is known as PE32+. As one would ex-
pect, the file format is derived from the PE file format with only very slight mod-
ifications. For instance, 64-bit binaries contain an IMAGE OPTIONAL HEADER64
rather than an IMAGE OPTIONAL HEADER. The differences between these two
structures are described in the table below:

Field PE PE32+
BaseOfData ULONG Removed from structure
ImageBase ULONG ULONGLONG
SizeOfStackReserve ULONG ULONGLONG
SizeOfStackCommit ULONG ULONGLONG
SizeOfHeapReserve ULONG ULONGLONG
SizeOfHeapCommit ULONG ULONGLONG

Figure 3.1: IMAGE OPTIONAL HEADER differences

In general, any structure attribute in the PE image that made reference to a
32-bit virtual address directly rather than through an RVA (Relative Virtual Ad-
dress) has been expanded to a 64-bit attribute in PE32+. Other examples of this

4

include the IMAGE TLS DIRECTORY structure and the IMAGE LOAD CONFIG DIRECTORY
structure.

With the exception of certain field offsets in specific structures, the PE32+
image file format is largely backward compatible with PE both in use and in
form.

3.2 Calling Convention

The calling convention used on x64 is much simpler than those used for x86.
Unlike x86, where calling conventions like stdcall, cdecl, and fastcall are
found, the x64 platform has only one calling convention. The calling convention
that it uses is a derivative of fastcall where the first four parameters of a
function are passed by register and any remaining parameters are passed through
the stack. Each parameter is 64 bits wide (8 bytes). The first four parameters
are passed through the RCX, RDX, R8, and R9 registers, respectively. For scenarios
where parameters are passed by value or are otherwise too large to fit into one
of the 64-bit registers, appropriate steps are taken as documented in [4].

3.2.1 Stack Frame Layout

The stack frame layout for functions on x64 is very similar to x86, but with a
few key differences. Just like x86, the stack frame on x64 is divided into three
parts: parameters, return address, and locals. These three parts are explained
individually below. One of the important principals to understand when it
comes to x64 stack frames is that the stack does not fluctuate throughout the
course of a given function. In fact, the stack pointer is only permitted to change
in the context of a function prologue1. Parameters are not pushed and popped
from the stack. Instead, stack space is pre-allocated for all of the arguments that
would be passed to child functions. This is done, in part, for making it easier
to unwind call stacks in the event of an exception. The table below describes a
typical stack frame:

Stack parameter area
Register parameter area

Return address
Locals

1Note that things like alloca are handled in a special manner[7]

5

Parameters

The calling convention for functions on x64 dictates that the first four param-
eters are passed via register with any remaining parameters, starting with pa-
rameter five, spilling to the stack. Given that the fifth parameter is the first
parameter passed by the stack, one would think that the fifth parameter would
be the value immediately adjacent to the return address on the stack, but this
is not the case. Instead, if a given function calls other functions, that function is
required to allocate stack space for the parameters that are passed by register.
This has the affect of making it such that the area of the stack immediately
adjacent to the return address is 0x20 bytes of uninitialized storage for the pa-
rameters passed by register followed immediately by any parameters that spill
to the stack (starting with parameter five). The area of storage allocated on
the stack for the register parameters is known as the register parameter area
whereas the area of the stack for parameters that spill onto the stack is known
as the stack parameter area. The table below illustrates what the parameter
portion of a stack frame would look like after making a call to a function:

Parameter 6
Parameter 5

Parameter 4 (R9 Home)
Parameter 3 (R8 Home)
Parameter 2 (RDX Home)
Parameter 1 (RCX Home)

Return address

To emphasize further, the register parameter area is always allocated, even
if the function being called has fewer than four arguments. This area of the
stack is effectively owned by the called function, and as such can be used for
volatile storage during the course of the function call. In particular, this area
is commonly used to persist the values of register parameters2. However, it
can also be used to save non-volatile registers. To someone familiar with x86
it may seem slightly odd to see functions modifying areas of the stack beyond
the return address. The key is to remember that the 0x20 bytes immediately
adjacent to the return address are owned by the called function. One important
side affect of this requirement is that if a function calls other functions, the
calling function’s minimum stack allocation will be 0x20 bytes. This accounts
for the register parameter area that will be used by called functions.

The obvious question to ask at this point is why it’s the caller’s responsibility
to allocate stack space for use by the called function. There are a few different
reasons for this. Perhaps most importantly, it makes it possible for the called
function to take the address of a parameter that’s passed via a register. Further-
more, the address that is returned for the parameter must be at a location that

2This area is also referred to as the “home” address for register parameters

6

is contiguous in relation to the other parameters. This is particularly necessary
for variadic functions, which require a contiguous list of parameters, but may
also be necessary for applications that make assumptions about being able to
reference parameters in relation to one another by address. Invalidating this
assumption would introduce source compatibility problems.

For more information on parameter passing, refer to the MSDN documentation[4,
7].

Return Address

Due to the fact that pointers are 64 bits wide on x64, the return address location
on the stack is eight bytes instead of four.

Locals

The locals portion of a function’s stack frame encompasses both local variables
and saved non-volatile registers. For x64, the general purpose registers described
as non-volatile are RBP, RBX, RDI, RSI, and R12 through R15[5].

3.3 Exception Handling on x64

On x86, exception handling is accomplished through the adding and removing
of exception registration records on a per-thread basis. When a function is
entered that makes use of an exception handler, it constructs an exception
registration record on the stack that is composed of an exception handler (a
function pointer), and a pointer to the next element in the exception handler
list. This list of exception registration records is stored relative to fs:[0].
When an exception occurs, the exception dispatcher walks the list of exception
handlers and calls each one, checking to see if they are capable of handling the
exception that occurred. While this approach works perfectly fine, Microsoft
realized that there were better ways to go about it. First of all, the adding
and removing of exception registration records that are static in the context
of an execution path adds needless execution overhead. Secondly, the security
implications of storing a function pointer on the stack have been made very
obvious, especially in the case where that function pointer can be called after
an exception is generated (such as an access violation). Finally, the process
of unwinding call frames is muddled with limitations, thus making it a more
complicated process than it might otherwise need to be[6].

With these things in mind, Microsoft completely revamped the way exception
handling is accomplished on x64. The major changes center around the ap-

7

proaches Microsoft has taken to solve the three major deficiencies found on x86.
First, Microsoft solved the execution time overhead issue of adding and removing
exception handlers by moving all of the static exception handling information
into a static location in the binary. This location, known as the .pdata sec-
tion, is described by the PE32+’s Exception Directory. The structure of this
section will be described in the exception directory subsection. By eliminating
the need to add and remove exception handlers on the fly, Microsoft has also
eliminated the security issue found on x86 with regard to overwriting the func-
tion pointer of an exception handler. Perhaps most importantly, the process
involved in unwinding call frames has been drastically improved through the
formalization of the frame unwinding process. This will be discussed in the
subsection on unwind information.

3.3.1 Exception Directory

The Exception Directory of a PE32+ binary is used to convey the complete
list of functions that could be found in a stack frame during an unwind oper-
ation. These functions are known as non-leaf functions, and they are qualified
as such if they either allocate space on the stack or call other functions. The
IMAGE RUNTIME FUNCTION ENTRY data structure is used to describe the non-leaf
functions, as shown below[1]:

typedef struct _IMAGE_RUNTIME_FUNCTION_ENTRY {
ULONG BeginAddress;
ULONG EndAddress;
ULONG UnwindInfoAddress;

} _IMAGE_RUNTIME_FUNCTION_ENTRY, *_PIMAGE_RUNTIME_FUNCTION_ENTRY;

The BeginAddress and EndAddress attributes are RVAs that represent the
range of the non-leaf function. The UnwindInfoAddress will be discussed in
more detail in the following subsection on unwind information. The Exception
directory itself is merely an array of IMAGE RUNTIME FUNCTION ENTRY structures.
When an exception occurs, the exception dispatcher will enumerate the array
of runtime function entries until it finds the non-leaf function associated with
the address it’s searching for (typically a return address).

3.3.2 Unwind Information

For the purpose of unwinding call frames and dispatching exceptions, each non-
leaf function has some non-zero amount of unwind information associated with
it. This association is made through the UnwindInfoAddress attribute of the
IMAGE RUNTIME FUNCTION ENTRY structure. The UnwindInfoAddress itself is
an RVA that points to an UNWIND INFO structure which is defined as[8]:

8

typedef struct _UNWIND_INFO {
UBYTE Version : 3;
UBYTE Flags : 5;
UBYTE SizeOfProlog;
UBYTE CountOfCodes;
UBYTE FrameRegister : 4;
UBYTE FrameOffset : 4;
UNWIND_CODE UnwindCode[1];

/* UNWIND_CODE MoreUnwindCode[((CountOfCodes + 1) & ~1) - 1];
* union {
* OPTIONAL ULONG ExceptionHandler;
* OPTIONAL ULONG FunctionEntry;
* };
* OPTIONAL ULONG ExceptionData[]; */
} UNWIND_INFO, *PUNWIND_INFO;

This structure, at a very high level, describes a non-leaf function in terms of
its prologue size and frame register usage. Furthermore, it describes the way
in which the stack is set up when the prologue for this non-leaf function is
executed. This is provided through an array of codes as accessed through the
UnwindCode array. This array is composed of UNWIND CODE structures which are
defined as[8]:

typedef union _UNWIND_CODE {
struct {

UBYTE CodeOffset;
UBYTE UnwindOp : 4;
UBYTE OpInfo : 4;

};
USHORT FrameOffset;

} UNWIND_CODE, *PUNWIND_CODE;

In order to properly unwind a frame, the exception dispatcher needs to be
aware of the amount of stack space allocated in that frame, the locations of
saved non-volatile registers, and anything else that has to do with the stack.
This information is necessary in order to be able to restore the caller’s stack
frame when an unwind operation occurs. By having the compiler keep track
of this information at link time, it’s possible to emulate the unwind process by
inverting the operations described in the unwind code array for a given non-leaf
function.

Aside from conveying stack frame set up, the UNWIND INFO structure may also
describe exception handling information, such as the exception handler that is
to be called if an exception occurs. This information is conveyed through the
ExceptionHandler and ExceptionData attributes of the structure which exist
only if the UNW FLAG EHANDLER flag is set in the Flags field.

9

For more details on the format and use of these structures for unwinding as
well as a complete description of the unwind process, please refer to the MSDN
documentation[2].

10

Chapter 4

Analysis Techniques

In order to improve the analysis of x64 binaries, it is important to try to identify
techniques that can aide in the identification or extraction of useful information
from the binary in an automated fashion. This chapter will focus on a handful of
simple techniques that can be used to better annotate or describe the behavior
of an x64 binary. These techniques intentionally do not cover the analysis of
code or data flow operations. Such techniques are outside of the scope of this
paper.

4.1 Exception Directory Enumeration

Given the explanation of the Exception Directory found within PE32+ im-
ages and its application to the exception dispatching process, it can be seen that
x64 binaries have a lot of useful meta-information stored within them. Given
that this information is just sitting there waiting to be used, it makes sense to
try to take advantage of it in ways that make it possible to better annotate
or understand an x64 binary. The following subsections will describe differ-
ent things that can be discovered by digging deeper into the contents of the
exception directory.

4.1.1 Functions

One of the most obvious uses for the information stored in the exception direc-
tory is that it can be used to discover all of the non-leaf functions in a binary.
This is cool because it works regardless of whether or not you actually have sym-
bols for the binary, thus providing an easy technique for identifying the majority
of the functions in a binary. The process taken to do this is to simply enumerate

11

the array of IMAGE RUNTIME FUNCTION ENTRY structures stored within the ex-
ception directory. The BeginAddress attribute of each entry marks the starting
point of a non-leaf function. There’s a catch, though. Not all of the runtime
function entries are actually associated with the entry point of a function. The
fact of the matter is that entries can also be associated with various portions
of an actual function where stack modifications are deferred until necessary. In
these cases, the unwind information associated with the runtime function entry
is chained with another runtime function entry.

The chaining of runtime function entries is documented as being indicated
through the UNW FLAG CHAININFO flag in the Flags attribute of the UNWIND INFO
structure. If this flag is set, the area of memory immediately following the last
UNWIND CODE in the UNWIND INFO structure is an IMAGE RUNTIME FUNCTION ENTRY
structure. The UnwindInfoAddress of this structure indicates the chained un-
wind information. Aside from this, chaining can also be indicated through an un-
documented flag that is stored in the least-significant bit of the UnwindInfoAddress.
If the least-significant bit is set, then it is implied that the runtime function en-
try is directly chained to the IMAGE RUNTIME FUNCTION ENTRY structure that is
found at the RVA conveyed by the UnwindInfoAddress attribute with the least
significant bit masked off. The reason chaining can be indicated in this fashion
is because it is a requirement that unwind information be four byte aligned.

With chaining in mind, it is safe to assume that a runtime function entry is
associated with the entry point of a function if its unwind information is not
chained. This makes it possible to deterministically identify the entry point of
all of the non-leaf functions. From there, it should be possible to identify all
of the leaf functions through calls that are made to them by non-leaf functions.
This requires code flow analysis, though.

4.1.2 Stack Frame Annotation

The unwind information associated with each non-leaf function contains lots of
useful meta-information about the structure of the stack. It provides informa-
tion about the amount of stack space allocated, the location of saved non-volatile
registers, and whether or not a frame register is used and what relation it has
to the rest of the stack. This information is also described in terms of the lo-
cation of the instruction that actually performs the operation associated with
the task. Take the following unwind information obtained through dumpbin
/unwindinfo as an example:

0000060C 00006E50 00006FF0 000081FC _resetstkoflw
Unwind version: 1
Unwind flags: None
Size of prologue: 0x47
Count of codes: 18

12

Frame register: rbp
Frame offset: 0x20
Unwind codes:
3C: SAVE_NONVOL, register=r15 offset=0x98
38: SAVE_NONVOL, register=r14 offset=0xA0
31: SAVE_NONVOL, register=r13 offset=0xA8
2A: SAVE_NONVOL, register=r12 offset=0xD8
23: SAVE_NONVOL, register=rdi offset=0xD0
1C: SAVE_NONVOL, register=rsi offset=0xC8
15: SAVE_NONVOL, register=rbx offset=0xC0
0E: SET_FPREG, register=rbp, offset=0x20
09: ALLOC_LARGE, size=0xB0
02: PUSH_NONVOL, register=rbp

First and foremost, one can immediately see that the size of the prologue used
in the resetstkoflw function is 0x47 bytes. This prologue accounts for all of
the operations described in the unwind codes array. Furthermore, one can also
tell that the function uses a frame pointer, as conveyed through rbp, and that
the frame pointer offset is 0x20 bytes relative to the current stack pointer at
the time the frame pointer register is established.

As one would expect with an unwind operation, the unwind codes themselves
are stored in the opposite order of which they are executed. This is necessary
because of the effect on the stack each unwind code can have. If they are pro-
cessed in the wrong order, then the unwind operation will get invalid data. For
example, the value obtained through a pop rbp instruction will differ depending
on whether or not it is done before or after an add rsp, 0xb0.

For the purposes of annotation, however, the important thing to keep in mind
is how all of the useful information can be extracted. In this case, it is possible
to take all of the information the unwind codes provide and break it down into
a definition of the stack frame layout for a function. This can be accomplished
by processing the unwind codes in the order that they would be executed rather
than the order that they appear in the array. There’s one important thing to
keep in mind when doing this. Since unwind information can be chained, it
is a requirement that the full chain of unwind codes be processed in execution
order. This can be accomplished by walking the chain of unwind information
and building an execution order list of all of the unwind codes.

Once the execution order list of unwind codes is collected, the next step is to
simply enumerate each code, checking to see what operation it performs and
building out the stack frame across each iteration. Prior to enumerating each
code, the state of the stack pointer should be initialized to 0 to indicate an
empty stack frame. As data is allocated on the stack, the stack pointer should
be adjusted by the appropriate amount. The actions that need to be taken for
each unwind operation that directly effect the stack pointer are described below.

13

1. UWOP PUSH NONVOL

When a non-volatile register is pushed onto the stack, such as through a
push rbp, the current stack pointer needs to be decremented by 8 bytes.

2. UWOP ALLOC LARGE and UWOP ALLOC SMALL

When stack space is allocated, the current stack pointer needs to be ad-
justed by the amount indicated.

3. UWOP SET FPREG

When a frame pointer is defined, its offset relative to the base of the stack
should be saved using the current value of the stack pointer.

As the enumeration unwind codes occurs, it is also possible to annotate the
different locations on the stack where non-volatile registers are preserved. For
instance, given the example unwind information above, it is known that the R15
register is preserved at [rsp + 0x98]. Therefore, we can annotate this location
as [rsp + SavedR15].

Beyond annotating preserved register locations on the stack, we can also anno-
tate the instructions that perform operations that effect the stack. For instance,
when a non-volatile register is pushed, such as through push rbp, we can anno-
tate the instruction that performs that operation as preserving rbp on the stack.
The location of the instruction that’s associated with the operation can be de-
termined by taking the BeginAddress associated with the unwind information
and adding it to the CodeOffset attribute of the UNWIND CODE that is being
processed. It is important to note, however, that the CodeOffset attribute ac-
tually points to the first byte of the instruction immediately following the one
that performs the actual operation, so it is necessary to back track in order to
determine the start of the instruction that actually performs the operation.

As a result of this analysis, one can take the prologue of the resetstkoflw
function and automatically convert it from:

.text:100006E50 push rbp

.text:100006E52 sub rsp, 0B0h

.text:100006E59 lea rbp, [rsp+0B0h+var_90]

.text:100006E5E mov [rbp+0A0h], rbx

.text:100006E65 mov [rbp+0A8h], rsi

.text:100006E6C mov [rbp+0B0h], rdi

.text:100006E73 mov [rbp+0B8h], r12

.text:100006E7A mov [rbp+88h], r13

.text:100006E81 mov [rbp+80h], r14

.text:100006E88 mov [rbp+78h], r15

to a version with better annotation:

14

.text:100006E50 push rbp ; SavedRBP

.text:100006E52 sub rsp, 0B0h

.text:100006E59 lea rbp, [rsp+20h]

.text:100006E5E mov [rbp+0A0h], rbx ; SavedRBX

.text:100006E65 mov [rbp+98h+SavedRSI], rsi ; SavedRSI

.text:100006E6C mov [rbp+98h+SavedRDI], rdi ; SavedRDI

.text:100006E73 mov [rbp+98h+SavedR12], r12 ; SavedR12

.text:100006E7A mov [rbp+98h+SavedR13], r13 ; SavedR13

.text:100006E81 mov [rbp+98h+SavedR14], r14 ; SavedR14

.text:100006E88 mov [rbp+98h+SavedR15], r15 ; SavedR15

While such annotation may is not entirely useful to understanding the behavior
of the binary, it at least simplifies the process of understanding the layout of
the stack.

4.1.3 Exception Handlers

The unwind information structure for a non-leaf function also contains useful
information about the way in which exceptions within that function should
be dispatched. If the unwind information associated with a function has the
UNW FLAG EHANDLER or UNW FLAG UHANDLER flag set, then the function has an ex-
ception handler associated with it. The exception handler is conveyed through
the ExceptionHandler attribute which comes immediately after the array of un-
wind codes. This handler is defined as being a language-specific handler for pro-
cessing the exception. More specifically, the exception handler is specific to the
semantics associated with a given programming language, such as C or C++[3].
For C, the language-specific exception handler is named C specific handler.

Given that all C functions that handle exceptions will have the same exception
handler, how does the function-specific code for handling an exception actually
get called? For the case of C functions, the function-specific exception handler
is stored in a scope table in the ExceptionData portion of the UNWIND INFO
structure1. This C scope table is defined by the structures shown below:

typedef struct _C_SCOPE_TABLE_ENTRY {
ULONG Begin;
ULONG End;
ULONG Handler;
ULONG Target;

} C_SCOPE_TABLE_ENTRY, *PC_SCOPE_TABLE_ENTRY;

typedef struct _C_SCOPE_TABLE {
ULONG NumEntries;

1Other languages may have a different ExceptionData definition

15

C_SCOPE_TABLE_ENTRY Table[1];
} C_SCOPE_TABLE, *PC_SCOPE_TABLE;

The scope table entries describe the function-specific exception handlers in re-
lation to the specific areas of the function that they apply to. Each of the
attributes of the C SCOPE TABLE ENTRY is expressed as an RVA. The Target at-
tribute defines the location to transfer control to after the exception is handled.

The reason why all of the exception handler information is useful is because it
makes it possible to annotate a function in terms of what exception handlers may
be called during its execution. It also makes it possible to identify the exception
handler functions that may otherwise not be found due to the fact that they are
executed indirectly. For example, the function CcAcquireByteRangeForWrite
in ntoskrnl.exe can be annotated in the following fashion:

.text:0000000000434520 ; Exception handler: __C_specific_handler

.text:0000000000434520 ; Language specific handler: sub_4C7F30

.text:0000000000434520

.text:0000000000434520 CcAcquireByteRangeForWrite proc near

4.2 Register Parameter Area Annotation

Given the requirement that the register parameter area be allocated on the
stack in the context of a function that calls other functions, it is possible to
statically annotate specific portions of the stack frame for a function as being
the location of the caller’s register parameter area. Furthermore, the location of
a given function’s register parameter area that is to be used by called functions
can also be annotated.

The location of the register parameter area is always at a fixed location in a
stack frame. Specifically, it immediately follows the return address on the stack.
If annotations are added for CallerRCX at offset 0x8, CallerRDX at offset 0x10,
CallerR8 at offset 0x18, and CallerR9 at offset 0x20, it is possible to get a
better view of the stack frame for a given function. It also makes it easier to
understand when and how this region of the stack is used by a function. For
instance, the CcAcquireByteRangeForWrite function in ntoskrnl.exe makes
use of this area to store the values of the first four parameters:

.text:0000000000434520 mov [rsp+CallerR9], r9

.text:0000000000434525 mov dword ptr [rsp+CallerR8], r8d

.text:000000000043452A mov [rsp+CallerRDX], rdx

.text:000000000043452F mov [rsp+CallerRCX], rcx

16

Chapter 5

Conclusion

This paper has presented a few basic approaches that can be used to extract
useful information from an x64 binary for the purpose of analysis. By analyzing
the unwind information associated with functions, it is possible to get a better
understanding for how a function’s stack frame is laid out. Furthermore, the
unwind information makes it possible to describe the relationship between a
function and its exception handler(s). Looking toward the future, x64 is likely
to become the standard architecture given Microsoft’s adoption of it as their
primary architecture. With this in mind, coming up with techniques to better
automate the binary analysis process will become more necessary.

17

Bibliography

[1] Microsoft Corporation. ntimage.h.
3790 DDK header files.

[2] Microsoft Corporation. Exception Handling (x64).
http://msdn2.microsoft.com/en-us/library/1eyas8tf(VS.80).aspx;
accessed Apr 25, 2006.

[3] Microsoft Corporation. The Language Specific Handler.
http://msdn2.microsoft.com/en-us/library/b6sf5kbd(VS.80).aspx;
accessed Apr 25, 2006.

[4] Microsoft Corporation. Parameter Passing.
http://msdn2.microsoft.com/en-us/library/zthk2dkh.aspx; ac-
cessed Apr 25, 2006.

[5] Microsoft Corporation. Register Usage.
http://msdn2.microsoft.com/en-us/library/9z1stfyw(VS.80).aspx;
accessed Apr 25, 2006.

[6] Microsoft Corporation. SEH in x86 Environments.
http://msdn2.microsoft.com/en-US/library/ms253960.aspx; ac-
cessed Apr 25, 2006.

[7] Microsoft Corporation. Stack Usage.
http://msdn2.microsoft.com/en-us/library/ew5tede7.aspx; ac-
cessed Apr 25, 2006.

[8] Microsoft Corporation. Unwind Data Definitions in C.
http://msdn2.microsoft.com/en-us/library/ssa62fwe(VS.80).aspx;
accessed Apr 25, 2006.

18

http://msdn2.microsoft.com/en-us/library/1eyas8tf(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/b6sf5kbd(VS.80).aspx
http://msdn2.microsoft.com/en-us/library/zthk2dkh.aspx
http://msdn2.microsoft.com/en-us/library/9z1stfyw(VS.80).aspx
http://msdn2.microsoft.com/en-US/library/ms253960.aspx
http://msdn2.microsoft.com/en-us/library/ew5tede7.aspx
http://msdn2.microsoft.com/en-us/library/ssa62fwe(VS.80).aspx

	Foreword
	Introduction
	Background
	PE32+ Image File Format
	Calling Convention
	Stack Frame Layout

	Exception Handling on x64
	Exception Directory
	Unwind Information

	Analysis Techniques
	Exception Directory Enumeration
	Functions
	Stack Frame Annotation
	Exception Handlers

	Register Parameter Area Annotation

	Conclusion

